simple random data
-
-
random values in a given shape
In [2]: np.random.rand(3) Out[2]: array([ 0.2978406 , 0.18461514, 0.24704652]) In [3]: np.random.rand(3, 5) Out[3]: array([[ 0.15870093, 0.49928607, 0.39069335, 0.7445641 , 0.3208757 ], [ 0.03554006, 0.11208914, 0.4263552 , 0.19699995, 0.17269604], [ 0.393527 , 0.33498196, 0.8278391 , 0.22020756, 0.97791024]])
-
-
-
return a sample (or samples) from the “standard normal” ditribution
In [4]: np.random.randn(3) Out[4]: array([-0.3169426 , -0.62385199, -0.3950756 ]) In [5]: np.random.randn(3, 5) Out[5]: array([[ 0.55238932, -1.46249184, 1.83115131, -0.75392455, 0.34590461], [-0.71300575, 0.23139916, 0.42955918, -1.00816456, -0.79046912], [ 0.27605609, 2.53116393, -0.15409915, -0.90058645, 0.43619731]])
-
-
-
return random integers [low, high)
In [6]: np.random.randint(3) Out[6]: 0 In [7]: np.random.randint(3, 5) Out[7]: 4 In [8]: np.random.randint(3, 9) Out[8]: 3
-
-
random_integers(low[, high, size])
-
return random integers [low, high]
In [11]: np.random.random_integers(3) Out[11]: 1 In [12]: np.random.random_integers(3, 9) Out[12]: 4
-
-
-
return random floats in the half-open interval [0.0, 1.0)
In [13]: np.random.random_sample(3) Out[13]: array([ 0.4559776 , 0.76772504, 0.46774327])
-
-
-
return random floats in the half-open interval [0.0, 1.0)
In [15]: np.random.random(3) Out[15]: array([ 0.30355838, 0.18042125, 0.3204727 ])
-
-
-
return random floats in the half-open interval [0.0, 1.0)
In [16]: np.random.ranf(3) Out[16]: array([ 0.75417093, 0.83522699, 0.47386136])
-
-
-
return random floats in the half-open interval [0.0, 1.0)
In [17]: np.random.sample(3) Out[17]: array([ 0.39996352, 0.89666635, 0.3100504 ])
-
-
-
generates a random sample from a given 1-d array
In [18]: np.random.choice(3) Out[18]: 2 In [19]: np.random.choice(3, 5) Out[19]: array([2, 2, 2, 1, 0]) In [20]: np.random.choice(3, 5, 2) Out[20]: array([2, 2, 0, 2, 2])
-
-
-
return random bytes
In [27]: np.random.bytes(3) Out[27]: '\xd1\x1a\xec' In [28]: np.random.bytes(5) Out[28]: '8\x10\x1e\x96\xc1'
-
permutations
-
-
modify a sequence in-place by shuffling its contents
In [33]: a = [1, 2, 3, 4, 5, 6, 7, 8, 9] In [34]: a Out[34]: [1, 2, 3, 4, 5, 6, 7, 8, 9] In [35]: np.random.shuffle(a) In [36]: a Out[36]: [6, 5, 4, 2, 3, 8, 7, 1, 9]
-
-
-
randomly permute a sequence, or return a permuted range
In [37]: a = [1, 2, 3, 4, 5, 6, 7, 8, 9] In [38]: np.random.permutation(a) Out[38]: array([7, 6, 2, 5, 8, 3, 9, 1, 4])
-
distributions
- todo